首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   420篇
  国内免费   985篇
大气科学   24篇
地球物理   622篇
地质学   3158篇
海洋学   286篇
天文学   17篇
综合类   23篇
自然地理   176篇
  2024年   9篇
  2023年   59篇
  2022年   94篇
  2021年   150篇
  2020年   168篇
  2019年   191篇
  2018年   171篇
  2017年   182篇
  2016年   171篇
  2015年   157篇
  2014年   177篇
  2013年   216篇
  2012年   198篇
  2011年   154篇
  2010年   121篇
  2009年   200篇
  2008年   292篇
  2007年   228篇
  2006年   200篇
  2005年   172篇
  2004年   178篇
  2003年   108篇
  2002年   104篇
  2001年   91篇
  2000年   103篇
  1999年   69篇
  1998年   75篇
  1997年   60篇
  1996年   37篇
  1995年   27篇
  1994年   52篇
  1993年   23篇
  1992年   14篇
  1991年   4篇
  1990年   13篇
  1989年   4篇
  1988年   9篇
  1987年   2篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1978年   1篇
排序方式: 共有4306条查询结果,搜索用时 15 毫秒
991.
992.
Garnet grains from an intensely metasomatized mid‐crustal shear zone in the Reynolds Range, central Australia, exhibit a diverse assortment of textural and compositional characteristics that provide important insights into the geochemical effects of fluid–rock interaction. Electron microprobe X‐ray maps and major element profiles, in situ secondary ion mass spectrometry oxygen isotope analyses, and U–Pb and Sm–Nd geochronology are used to reconstruct their thermal, temporal and fluid evolution. These techniques reveal a detailed sequence of garnet growth, re‐equilibration and dissolution during intracontinental reworking associated with the Ordovician–Carboniferous (450–300 Ma) Alice Springs Orogeny. A euhedral garnet porphyroblast displays bell‐shaped major element profiles diagnostic of prograde growth zoning during shear zone burial. Coexisting granulitic garnet porphyroclasts inherited from precursor wall rocks show extensive cation re‐equilibration assisted by fracturing and fragmentation. Oxygen isotope variations in the former are inversely correlated with the molar proportion of grossular, suggesting that isotopic fractionation is linked to Ca substitution. The latter generally show close correspondence to the isotopic composition of their precursor, indicating slow intergranular diffusion of O relative to Fe2+, Mg and Mn. Peak metamorphism associated with shearing (~550 °C; 5.0–6.5 kbar) occurred at c. 360 Ma, followed by rapid exhumation and cooling. Progressive Mn enrichment in rim domains indicates that the retrograde evolution caused partial garnet dissolution. Accompanying intra‐mineral porosity production then stimulated limited oxygen isotope exchange between relict granulitic garnet grains and adjacent metasomatic biotite, resulting in increased garnet δ18O values over length scales <200 μm. Spatially restricted oxygen interdiffusion was thus facilitated by increased fluid access to reaction interfaces. The concentration of Ca in channelled fracture networks suggests that its mobility was enhanced by a similar mechanism. In contrast, the intergranular diffusion of Fe2+, Mg and Mn was rock‐wide under the same P–T regime, as demonstrated by a lack of local spatial variations in the re‐equilibration of these components. The extraction of detailed reaction histories from garnet must therefore take into account the variable length‐ and time‐scales of elemental and isotopic exchange, particularly where the involvement of a fluid phase enhances the possibility of measureable resetting profiles being generated for slowly diffusing components such as Ca and O, even at low ambient temperatures and relatively fast cooling rates.  相似文献   
993.
Pollen data are well established for quantitative climate reconstructions over long timescales, including the Holocene and older interglacials. However, anthropogenically induced environmental change in central Europe was strong during the last 4 ka, challenging quantitative reconstructions of this time period. Here we present quantitative climate reconstructions based on pollen analyses and evaluate them with the peat humification record and the stable carbon isotopes of Sphagnum plant material (δ13Ccellulose). All analyses were carried out on the same 7.5 m long, largely ombrotrophic peat bog section from Dürres Maar. Three different methods were used for the quantitative climate reconstructions on the basis of the pollen data: (1) a probabilistic indicator taxa approach (the ‘pdf method’); (2) a modern analogue technique based on pollen taxa from modern surface samples (cMAT); and (3) a modern analogue technique expanded by plant functional types (pMAT). At Dürres Maar the peat humification is only affected by peat cutting during the Roman period and the Middle Ages. The stable carbon isotopes are seemingly unaffected by human impact. Thus both proxies provide independent data to evaluate the reconstructions on the basis of pollen data. The quantitative climate reconstructions on the basis of the individual methods are in general relatively similar. Nevertheless, distinct differences between the individual approaches are also apparent, which could be attributed to taxa that reflect human impact on a local to regional scale. While the pdf method appears to be relatively robust to all observed anthropogenically induced vegetation changes, it potentially underestimates climate variability. This method is therefore expected to be independent of local site characteristics and to provide robust quantitative estimates of climatic trends rather than of climatic variability of small amplitude. This is of value for palaeoclimate reconstructions of older interglacials, for which neither multiple sites nor independent climate proxies are available for comparison. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
994.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   
995.
Very few high‐resolution and directly dated terrestrial archives of the last glacial period exist for the western Mediterranean region, yet this is a key locality for recording sub‐millennial North Atlantic and Mediterranean climate change. Here, we present evidence of effective precipitation changes based on growth history and δ13C of calcite in a Mallorcan stalagmite that grew between 112 and 48 ka. Effective precipitation in Mallorca appears to have been sensitive to proximal sea surface temperature variations and at certain times, ca. 76 ka for example, changed rapidly from moist to arid conditions in only a few centuries. A sea‐level highstand during Marine Isotope Stage (MIS) 5a interrupted growth. Regrowth started promptly after this, but effective precipitation decreased markedly for much of the later part of MIS 5a, and also for shorter periods correlative with Heinrich events H8 (ca. 90 ka) and H6 (ca. 65 ka), with growth ceasing during H5 (ca. 48 ka). Arid episodes in Mallorca appear to be expressions of extremely cold periods recorded further north in Europe and occur contemporaneously with rapid decreases in Greenland temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
996.
Multiple tracers of groundwater input (salinity, Si, 223Ra, 224Ra, and 226Ra) were used together to determine the magnitude, character (meteoric versus seawater), and nutrient contribution associated with submarine groundwater discharge across the leeward shores of the Hawai'ian Islands Maui, Moloka'i, and Hawai'i. Tracer abundances were elevated in the unconfined coastal aquifer and the nearshore zone, decreasing to low levels offshore, indicative of groundwater discharge (near-fresh, brackish, or saline) at all locations. At several sites, we detected evidence of fresh and saline SGD occurring simultaneously. Conservative estimates of SGD fluxes ranged widely, from 0.02–0.65 m3 m− 2 d− 1at the various sites. Groundwater nutrient fluxes of 0.04–40 mmol N m− 2 d− 1 and 0.01–1.6 mmol P m− 2 d− 1 represent a major source of new nutrients to coastal ecosystems along these coasts. Nutrient additions were typically greatest at locations with a substantial meteoric component in groundwater, but the recirculation of seawater through the aquifer may provide a means of transferring terrestrially-derived nutrients to the coastal zone at several sites.  相似文献   
997.
We determined 15N/14N ratios of total nitrogen in surface sediments and dated sediment cores to reconstruct the history of N-loading of the North Sea. The isotopic N composition in modern surface sediments is equivalent to and reflects the isotopic mixture of oceanic nitrate on the one hand (δ15N = 5‰) and the imprint of river-borne nitrogen input into the SE North Sea (δ15N up to 12‰ in estuaries of the SE North Sea) on the other hand. We compare the results with δ15N records from pre-industrial sediment intervals in cores from the Skagerrak and Kattegat areas, which both constitute significant depositional centres for N in the North Sea and the Baltic Sea/North Sea transition. As expected, isotopically enriched anthropogenic nitrogen was found in the two records from the Kattegat area, which is close to eutrophication sources on land. Enrichment of δ15N in cores from the Skagerrak – the largest sediment sink for nitrogen in the entire North Sea – was not significant and values were similar to those found in sediment layers representing pre-industrial conditions. We interpret this isotopic uniformity as an indication that most riverine reactive nitrogen with its characteristic isotopic signature is removed by denitrification in shallow shallow-water sediments before reaching the main sedimentary basin of the North Sea.  相似文献   
998.
The Arabian Sea is subject to intense seasonality resulting from biannual monsoons, which lead to associated large particulate fluxes and an abundance of organic carbon, a potential food source at the seafloor for benthic detritivores. We used the stable isotopes of carbon and nitrogen alongside lipid analyses to examine potential food sources (particulate and sedimentary organic matter, POM and SOM respectively) in order to determine trophic linkages for the twelve most abundant megafaunal species (Pontocaris sp., Solenocera sp., Munidopsis aff. scobina, Actinoscyphia sp., Actinauge sp., Echinoptilum sp., Pennatula aff. grandis, Astropecten sp. Amphiura sp. Ophiura euryplax, Phormosoma placenta and Hyalinoecia sp.) at the Pakistan Margin between 140 and 1400 m water depth. This transect spans a steep gradient in oxygen concentrations and POM flux. Ranges of δ13C and δ15N values were narrow in POM and SOM (4‰ and 2‰ for δ13C and δ15N, respectively) with little evidence of temporal variability. Labile lipid compounds in SOM originating from phytoplankton did exhibit seasonal change in their concentrations at the shallowest sites, 140 and 300 m. Benthic megafauna had broad ranges in δ13C and δ15N (>10‰ and >8‰ for δ13C and δ15N, respectively) suggesting they occupy several trophic levels and utilize a variety of food sources. There is evidence for feeding niche separation between and within trophic groups. Lipid biomarkers in animal tissues indicate a mixture of food sources originating from both phytoplankton (C20:5(n-3) and C22:6(n-3)) and invertebrate prey (C20:1 and C22:1). Biomarkers originating from phytodetritus are conserved through trophic transfer to the predator/scavengers. Six species (Pontocaris sp., Solenocera sp., Actinoscyphia sp., Echinoptilum sp., Amphiura sp. and Hyalinoecia sp.) showed a significant biochemical response to the seasonal supply of food and probably adapt their trophic strategy to low food availability. Biotransformation of assimilated lipids by megafauna is evident from polyunsaturated fatty acid distributions, for example, Echinoptilum sp. converts C20:5(n-3) to C24:6(n-3).  相似文献   
999.
In the framework of the KEOPS project (KErguelen: compared study of the Ocean and the Plateau in Surface water), we aimed to provide information on the water mass pathways and vertical mixing on the Kerguelen Plateau, Southern Ocean, based on 228Ra profiles. Because 228Ra activities are extremely low in this area (~ 0.1 dpm/100 kg or ~ 2.10− 18 g kg− 1), the filtration of large volumes of seawater was required in order to be able to detect it with minimal uncertainty. This challenging study was an opportunity for us to test and compare methods aimed at removing efficiently radium isotopes from seawater. We used Mn-fiber that retains radium and that allows the measurement of all four radium isotopes (226Ra, 228Ra, 223Ra, 224Ra). First, we used Niskin bottles or the ship's seawater intake to collect large volumes of seawater that were passed onto Mn-fiber in the laboratory. Second, we filled cartridges with Mn-fiber that we placed in tandem on in situ pumps. Finally, we fixed nylon nets filled with Mn-fiber on the frame of in situ pumps to allow the passive filtration of seawater during the pump deployment.Yields of radium fixation on the cartridges filled with Mn-fiber and placed on in situ pumps are ca. 30% when combining the two cartridges. Because large volumes of seawater can be filtered with these pumps, this yields to effective volumes of 177–280 kg (that is, higher than that recovered from fourteen 12-l Niskin bottles). Finally, the effective volume of seawater that passed through Mn-fiber placed in nylon nets and deployed during 4 h ranged between 125 and 364 kg. Consequently, the two techniques that separate Ra isotopes in situ are good alternatives for pre-concentrating radium from seawater. They can save ship-time by avoiding repeated CTD casts to obtain the large volumes of seawater. This is especially true when in situ pumps are deployed to collect suspended particles. However, both methods only provide 228Ra/226Ra ratios. The determination of the 228Ra specific activity is obtained by multiplying this ratio by the 226Ra activity measured in a discrete sample collected at the same water depth.  相似文献   
1000.
Changes from winter (July) to summer (February) in mixed layer carbon tracers and nutrients measured in the sub-Antarctic zone (SAZ), south of Australia, were used to derive a seasonal carbon budget. The region showed a strong winter to summer decrease in dissolved inorganic carbon (DIC;  45 µmol/kg) and fugacity of carbon dioxide (fCO2;  25 µatm), and an increase in stable carbon isotopic composition of DIC (δ13CDIC;  0.5‰), based on data collected between November 1997 and July 1999.The observed mixed layer changes are due to a combination of ocean mixing, air–sea exchange of CO2, and biological carbon production and export. After correction for mixing, we find that DIC decreases by up to 42 ± 3 µmol/kg from winter (July) to summer (February), with δ13CDIC enriched by up to 0.45 ± 0.05‰ for the same period. The enrichment of δ13CDIC between winter and summer is due to the preferential uptake of 12CO2 by marine phytoplankton during photosynthesis. Biological processes dominate the seasonal carbon budget (≈ 80%), while air–sea exchange of CO2 (≈ 10%) and mixing (≈ 10%) have smaller effects. We found the seasonal amplitude of fCO2 to be about half that of a study undertaken during 1991–1995 [Metzl, N., Tilbrook, B. and Poisson, A., 1999. The annual fCO2 cycle and the air–sea CO2 flux in the sub-Antarctic Ocean. Tellus Series B—Chemical and Physical Meteorology, 51(4): 849–861.] for the same region, indicating that SAZ may undergo significant inter-annual variations in surface fCO2. The seasonal DIC depletion implies a minimum biological carbon export of 3400 mmol C/ m2 from July to February. A comparison with nutrient changes indicates that organic carbon export occurs close to Redfield values (ΔP:ΔN:ΔC = 1:16:119). Extrapolating our estimates to the circumpolar sub-Antarctic Ocean implies a minimum organic carbon export of 0.65 GtC from the July to February period, about 5–7% of estimates of global export flux. Our estimate for biological carbon export is an order of magnitude greater than anthropogenic CO2 uptake in the same region and suggests that changes in biological export in the region may have large implications for future CO2 uptake by the ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号